Error Floors of LDPC Codes

Tom Richardson

Flarion Technologies
Bedminster, NJ 07921
tjr@flarion.com

Abstract

We introduce a computational technique that accurately predicts performance
for a given LDPC code in the error floor region. We present some results obtained
by applying the technique and describe certain aspects of it.

1 Introduction

Performance curves of iterative coding schemes such as LDPC codes and turbo codes are
well-known as “waterfall” curves. Sometimes, one observes the bottom of the waterfall,
often referred to as the error floor. In the case of parallel concatenated turbo codes the
error floor can be paritally attributed to low-weight codewords in the code [1]. Often, the
error floor is not observed because it is out of reach of the simulation performed. Recent
simulation of LDPC codes performed on high speed hardware platforms indicate that
LDPC codes, even regular ones like (3,x) and (5,x) Gallager codes, do exhibit error floors.
Unlike parallel concatenated turbo codes, however, the error floor does not typically arise
from low-weight codewords.

In a recent paper [2], MacKay and Postol discovered in simulation a “weakness” in
the Margulis construction of a regular (3,6) Gallager code that gives rise to a relatively
high error floor. We have reproduced their simulation results using a slightly different
decoder (5 bit approximation to belief propagation) and plotted the results in Fig. 1. The
source of the problem is identified in [2] as certain “near codewords” in the graph. These
are small sets in the graph, consisting of 12 or 14 variable nodes such that the induced
sub-graph has a small number (4) of odd (1) degree neighbors. In fact, using techniques
discussed in this paper, we find 1320 distinct sets of each type, all equivalent under the
automorphism of the graph. At E,/Ny = 2.4dB,o = 0.725 and using a 5 bit decoder
each (12, 4) subset gives rise to a failure with probability about 6.5 x 1071°. Consequently,
the frame error rate of the code is lower bounded by 1320 x (6.5 x 1071%) = 8.6 x 107".
By our estimates, this accounts for about 75% of the error floor performance, and 1320
(14,4) “near codewords” account for another 23%. An interesting question at this point
is how low an FER error floor can one achieve with a code of these parameters. Our
investigations indicate that the answer is about 1071, see Fig. 1.

In the case of the binary erasure channel (BEC), the error floor region of LDPC
code performance is reasonably well understood [3]. This understanding grew out of an
elementary observation: Decoding failure of LDPC codes over the binary erasure channel
has a purely combinatorial characterization. Certain subsets of variable nodes in the
Tanner graph of the LDPC code, called stopping sets [3], are precisely those subsets that
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Figure 1: Simulation and error floor predictions for some regular (3,6) LDPC codes using
a 5-bit decoder. The codes in order from highest to lowest error floor are the Margulis
graph (n=2640), an n=2048 code, an n=2640 code (same as the Margulis graph), and an
n=8096 code. The dashed curves are extrapolations. Except for the Margulis code, code
simulations were performed on an FPGA platform. Error floor predictions are computed
on a PC.

can constitute final undetermined variable nodes under iterative decoding. Since stopping
sets have a combinatorial characterization, their distribution within ensembles of graphs
can be analyzed, although with some difficulty. Given a BEC with erasure probability
e and given the collection of stopping sets in a Tanner graph, the performance of the
code over the BEC is completely determined. In the error floor region, performance is
dominated by the small stopping sets in the graph.

We extend the insight gained in the analysis of the BEC to other memoryless channels
such as the additive white Gaussian noise channel (AWGNC) and the binary symmetric
channel (BSC). The approach taken in this work is slightly different from that taken
for the BEC in [3]. Rather than attempting to analyze performance of ensembles, we
develop a methodology for predicting the error floor behavior of a given graph. From a
practical standpoint, this approach is more desireable. Applications requiring very deep
error floors can now be seriously addressed. Although we do not, and probably cannot,
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obtain a simple closed combinatorial characterization of decoding failure as for the BEC,
certain combinatorial aspects still play a key role. (This aspect will not be developed in
this short version of the paper.)

The main result in this paper is not an analytical prediction of error floors but rather
a computational technique that allows prediction of error floors, with very good accuracy,
in regimes far beyond the reach of simulation. The accuracy of the technique is verified in
regimes that can be reached by simulation. For this reason we have focussed on a decoding
algorithm that is available as a hardware implementation. Permitting simulation of error
floors for frame error rates down to about 10~%. Furthermore, all codes other than the
Margulis code are quasi-cyclic LDPC codes with cycles of length 64, the class of codes
supported by a particular version of the above-mentioned hardware implementation.

Fig. 1 presents some results for (3,6) graphs. The error floor prediction curves were
computed on a PC. From these examples one can see both the accuracy of the tech-
nique and the feasibility of predicting deep error floors. Many other examples including
irregular graphs and other rates have also verified the accuracy of the technique.

2 Some Experimental Results

The starting point of much of the work in this paper was a series of experiments. In this
section we review one set of such experiments and indicate the observations made.

The Tanner graphs simulated were all cyclic “liftings” [4] of size 64 of a “projected”
graph. The projected graphs each have 64 degree 3 variable nodes, 3 degree 14 check
nodes and 10 degree 15 check nodes. Thus, the resulting codes are nearly regular quasi-
cyclic codes of length 4096 with code rate 51/64 = 0.7969.

We have simulated examples drawn from three different ensembles or, more precisely,
three different levels of expurgation from the random ensemble. The first ensemble con-
sists of random parameters except graphs with multiple edges between a single variable
and check node (multiple edges in the projected graph are allowed) are excluded. The
second ensemble has been optimized with respect to girth. An optimization on the edge
lifting is run to achieve girth 8 (the largest possible) but no further optimization is
attempted. The third ensemble has been further “neighborhood” optimized to reduce
certain multiplicities of loops of size 8 through the edges. (Details of the method will be
given in the full paper. See [5] and [6] for relevant and related methods.) Frame error
rate curves are shown in fig. 2.

The hardware platform on which these experiments were performed returned only the
final state of the decoding, so oscillations are not identified as such. Nevertheless, the
results are quite revealing. In the error floor region virtually all failures are due to “near
codewords.” Later, we will call them trapping sets. These are sets with a relatively small
number of variable nodes such that the induced sub-graph has only a small number of
odd degree check nodes. Invariably in these experiments, the sub-graph contains only
degree 2 and degree 1 check nodes. This can be understood as a combinatorial bias,
especially for optimized graphs. Larger check node degrees are possible but are unlikely
in the smallest (dominant) trapping sets. This is especially true for girth optimized
graphs. The clustering observed in the performance curves for random graphs is generally
attributable to the worst case trapping set. The worst performing graphs have trapping
sets of the form (3,1), 3 variable nodes with an induced subgraph having one degree 1
check node. The next cluster are those graphs with (5,1) trapping sets, etc. Note that
the group structure of the graphs exagerates the differences between graphs since each
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Figure 2: Frame error rates for random graphs (green), girth optimized (blue), and
neighborhood optimized (red) graphs all of identical degree structure (nearly regular
(3,15)).

sub-structure occurs with multiplicity 64.

It is interesting to note that the girth optimized graphs still show significant variation
in their error floor performance and the neighborhood optimized graphs display better
performance on average and smaller variation. Even in this set of graphs, however, there
are some relatively poor performing outliers. This shows that our optimization still has
its limitations. Even if the optimization always gave a best performing graph, it is still
desirable to be able to predict that performance, especially when it is not within reach
of simulation.

3 Preliminaries

To study failure of iterative decoding of LDPC codes we need to formalize failure to
some extent. Therefore, we introduce a definition of the set of variable nodes on which
decoding fails.

3.1 Defining Failure

Let ) denote the set of all possible inputs to the decoder. We assume a binary code
associated to a Tanner graph with N variable nodes. An iterative decoder is defined to be
asequence of maps Df(y) : JV — {0,1}, £=0,1,2,3,4, ... We shall assume a symmetric
channel and decoder so we can assume that the all 0 codeword was transmitted. (For
the BEC let 1 denote an erasure.) Let D%(y)[i] denote the ith output bit. The index ¢
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indicates the iteration number. We say that bit ¢ is eventually correct if there exists [
such that, for all i > I, D(y)[i] = 0. A decoding is successful if all bits are eventually
correct. For a given input y we define the failure set T(y) to be the set of bits that are not
eventually correct. Thus, decoding is successful on y if and only if T(y) = (. If T(y) # 0
then we say that T(y) is a trapping set. We say T is a (a,b) trapping set if it has a
variable nodes and b odd degree check nodes neighbors in the sub-graph induced by T.

In practice, under simulation, see Sect. 4, we identify the trapping set in the following
way. Some large fixed number of iterations (say 200) is performed unless the decoder
converges to a codeword earlier. If it has not converged after the fixed number of iterations
then we do some further iterations (20 say) and identify the trapping set as the union of
all bits which do not decode correctly during those 20 iteration.

Note that the trapping set definition depends on the decoder input space and the
decoding algorithm. We could, for example, consider a maximum likelihood decoder
which decodes to the most likely codeword in one iteration. In this case the set of
trapping sets is precisely the set of non-zero codewords.

Fact 1. If the decoder is the one-step maximum likelihood decoder then the trapping sets
are precisely the non-zero codewords.

Of course, the cases of interest are iterative decoders.

Fact 2. If the channel is the BEC and the decoder is belief propagation then the trapping
sets are precisely the stopping sets.

There are other cases in which trapping sets have entirely combinatorial characteri-
zations. Consider a regular (3,6) (Gallager) LDPC graph (with no multiple edges) used
over the BSC with a serial flipping algorithm in which bits are flipped, at most one per
iteration, if the number of neighboring unsatisfied constraints for that bit is 2 or 3.

Fact 3. For serial flipping on a (3,6) graph subset is a trapping set if and only if each
node in the set has at most one induced odd degree neighbor check node in the subgraph
induced by the trapping set and no other variable node in the graph neighbors more than
one of the odd degree check nodes.

(To prove this first note that the number of unsatisfied check nodes is monotonically
decreasing under serial flipping.)

Fact 4. Serial flipping trapping sets are trapping sets for the Gallager A (or B) algorithm.

We cannot presently say that these are all the trapping sets because Gallager A and
B may produce oscillations on other types of sets.

The decoding algorithm of greatest interest is belief propagation and its approxi-
mations. The results in this paper are obtained for a finite (5 bit) approximation of
belief propagation. Error floor behavior of coding systems can depend strongly on the
form of quantization used, see [7] for some examples. To illustrate the point, consider
again a regular (3,6) graph and suppose the decoder is belief propagation (with messages
represented as log-likelihoods) except that messages are saturated to lie in the interval
[— K, K]. If the input not saturated, then a single node can be trapping set. If the input
is saturated, to [— K, K] say, then a single node (most likely) will not be a trapping set.
In any case, the question of exactly what can and what cannot be a trapping set is not
the critical question. The goal of the work is to understand the error floor region by
identifying the most relevant trapping sets.
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3.2 Decomposition of Failure

Let &+ C Y denote the set of inputs that give rise to a failure on a trapping set T. Then,

FER = ) Pr{¢r}.

Of course, Pr{¢t} depends on the channel. Typically, we consider a parameterized family
of channels ordered by physical degradation and we write Pr{&t : o}. Here, o is the chan-
nel parameter and increasing o degrades the channel. For a maximum likelihood decoder
the FER is dominated by low-weight codewords when ¢ is small. This implies that the
number of terms that dominate FER is relatively small in this region. Something similar
happens under iterative decoding of LDPC codes in the error floor region. Relatively
small trapping sets in the graph give rise to failure events that dominate performance in
the error floor region. The size of the trapping set is not the only relevant parameter.
Even for fixed b, it sometimes happens that (a,b) trapping sets fail at a higher rate than
(a’,b) trapping sets with a > '

We prefer the name trapping sets over “near codewords” because failure is a decoder
dependant local dynamic effect in which the state of the set gets trapped on the incorrect
values even though unsatisfied constraints remain (except in the case of a low-weight
codeword). If the number of odd degree neighbors is sufficiently large then, for reasonable
decoders, one can show that the incorrect decoding is unstable provided the rest of the
graph converges sufficiently well. Because the trapping set structures involved in the
error floor are relatively small, and because their cardinality is not too large, it is feasible
to discover, enumerate, and evaluate them.

3.3 A Two-Stage Attack

The technique that this paper introduces has two phases. The first phase is to search
the Tanner graph for candidate trapping sets. The candidates are drawn largely from
combinatorial considerations. These considerations are guided partly by heuristics and
partly by consideration of various decoders, flipping decoders in particular. (We will not
develop this stage of the technique in this short version of the paper.) The goal of this
stage is to form a nearly complete list of candidates, T, To,..., Tg, covering the error
floor region. Graphs that possess an automorphism are advantageous since each candidate
trapping set is a member of an equivalence class of trapping sets whose size is the order
of the automorphism. We need only keep one representative from each equivalence class
on the list. The Margulis graph has an automorphism of size 1320 and all other graphs
in this paper have an automorphism of size 64. Once a rich set of candidates is found
we begin the second phase - evaluating their contribution to the error floor. Sometimes,
during this evaluation, additional trapping sets may be discovered: they are added to
the list, see Sect. 4.2. We then obtain, in effect, a lower bound FER > Ele Pr{éy, },
although Pr{&t,} is generally not known exactly.

4 'Trapping Set Evaluation
In this section we describe a technique for evaluating the error rate associated to a given
trapping set Pr{{r,} and a given channel and terative decoder. The main idea is to

determine the error rate conditioned on some dominating aspect of the input to the
trapping set. Due to space limitations we consider here only the AWGN channel.
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Figure 3: Summary of error floor evaluation of a (12,4) trapping set T in the Margulis
graph. The horizontal axis indicates the value of the random variable s = 12%7. The
curve labelled “Simulated Fail Rate” indicates the probability of an otherwise random
input failing on the given trapping set as a function of s. The curve labelled “Input Prob
Rate” indicates the probability density of s. The curve labelled “Contributed Fail Rate”
gives the product (sum in the log-domain) of these two curves. It indicates the failure
rate on T as a function of s. The total failure rate on T is given as the integral of this
function with respect to s. The result is about 6.5 x 107,

4.1 The AWGN Case

Suppose the trapping set has K variable nodes (none of which are punctured). The input
Y1, ..., Yn to the decoder can be written y; = %(1 +mn;),i=1,...,n, where {n;}; are i.i.d.
N(0,0?) random variables. Consider the subvector (ny, ..., nx) of noise contributed to the
trapping set. This is a Gaussian vector of with mean 0 and covariance matrix o2l .
Now, consider an orthonormal basis for R¥ with the first vector being é(l, oy 1). We

write
1

K2
where v is N(0,0?%) and s is therefore N(0, K ~'0?). To evaluate the failure rate of the
trapping set we consider conditioning on s. The hope is that the failure rate is strongly
dependent on the value of s. This is reasonable since s determines the relative distance
of the input to (1,...,1) and (—1,...,—1). Thus, we express the failure rate on the given
trapping set as

(n1,.onkg) =7—(1,..,1) + ... =s(1,...,1) + ...

Pr{¢r} = EPr{ér|s} = %/_ Pr{ér|s =z} eJéQTI?( dx
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In practice, we attempt to determine the function Pr{ét|s = =}

neighborhood of its maximum. The function is expected to decay quickly as s moves
away from the maximum so that the integral is largely determined by the behavior near
the maximum. The second factor is available analytically, the first factor Pr{¢r|s = x}
is estimated by in situ simulation on a PC. This is where the definition of failure on
T becomes important: we count only failures that occur precisely on T. Typically, it
is sufficient to simulate down to about Pr{ér|s = x} ~ 1073. This is what makes the
technique efficient. Figure 3 displays the results for the (12,4) trapping set in the Margulis
graph in the log domain.

4.2 Clustering of Trapping Sets

Very often, especially in highly optimized graphs, trapping sets occur in overlapping
clusters. The Margulis graph, despite its weakness, is a case in point. The (14,4) trapping
sets are each 2-node extensions of the (12,4) trapping sets. As a consequence of this
overlap, one often observes failures on one trapping set while evaluating the other. This
lends a certain robustness to the trapping set search: once a single trapping set from a
tight cluster of trapping sets is identified, the other trapping sets are typically discovered
during the evaluation stage. This reduces the burden of completeness of the initial search
phase; we do not worry too much that every trapping set is found, we do hope, however,
that every cluster is found.

5 A Test Case

Since the error floor of the Margulis graph is relatively easy to determine, we chose
instead one graph from the neighborhood optimized ensemble discussed in Sect. 2 for
detailed study. A total of 5000 error events were collected from the hardware simulation
at 0 = 0.51 and at o = 0.48 respectively. Unfortunately, the hardware platform records
only the final error state, so (relatively rare) oscillations are not properly detected. For
the same two points, predictions of the error floor were computed on a PC. Partial results
(the most dominant trapping sets) are shown in table 1 and the performance curve along
with the error floor predictions are plotted in Fig. 5. The accuracy of the predictions
is striking. In table 1 one can notice some failures with (3,9) and (4,10) trapping sets.
These failures are likely due to 2 iteration oscillations on (7,3) trapping sets.

5.1 Extrapolating a curve from one data point

In all of the presented error floor predictions, the predicted point is indicated by a small
circle that lies on a curve. We now explain how the curve is derived from the data used
to generate the point marked by the circle.

The key point is that as o varies locally, the factor Pr{&t| s} changes relatively little,
see Fig 4. Most of the variation in the error floor point is due to the analytically deter-

<2
minable factor % et Thus, from the data giving Pr{&t| s} for some particular o,
a curve can be easily extrapolated. The error floor curves predicted from ¢ = 0.48 and
o = 0.51 seen in Fig. 5 are almost identical.

In Fig. 6 we present error floor evaluation results for (10, z) and (12, z) trapping sets

for x = 0,2, and 4. What is interesting to note here is the consistency of the curves.
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Figure 4: [Left plot.] The figure is similar Fig. 3. The data is for the test rate 0.8 graph
for the (9,1) trapping set evaluated at 2 data points, ¢ = 0.48 and o = 0.51. Notice that
the simulation data changes relatively little.

Figure 5: [Right plot.] Hardware code simulation and two PC error floor predictions for
test case graph. Predictions performed at o = 0.48 and ¢ = 0.51 and curves extrapolated
from the data. We note that the two error floor curves are nearly identical.

Simulated 8.89e-08 Predicted 8.73e-08
(a,b) | # failures | # classes | rel rate fail rate fail rate rel rate # classes
(8,2) 1767 9 0.38955 | 3.56828e-08 || 3.5008e-08 | 0.400916 10
(7,3) 816 14 0.17989 | 1.64783e-08 || 2.0399¢-08 | 0.233614 171
(9,3) 505 397 0.11133 | 1.01979¢-08 || 8.6179¢-09 | 0.0986908 1609
(9,1) 431 1 0.09501 | 8.70361e-09 || 7.3155e-09 | 0.0837768 1
(10,0) 338 1 0.07451 | 6.82557e-09 || 5.0943e-09 | 0.0583401 1
(10,2) 262 72 0.05776 | 5.29082e-09 || 5.1576e-09 | 0.0590649 80
(11,3) 141 139 0.03108 | 2.84735e-09 || 2.5950e-09 | 0.0297177 12500*
(12,2) 49 48 0.01080 | 9.89506e-10 || 8.066e-10 | 0.00923716 611
(10,4) 36 36 0.00793 | 7.26984e-10 || 7.7422e-10 | 0.00886628 | 204000*
(11,1) 34 4 0.00749 | 6.86596e-10 || 7.1408e-10 | 0.00817754 4
(12,4) 28 28 0.00617 | 5.65432e-10 || 6.9905e-11 | 0.00080054 | 221500*
(3,9) 27 5 0.00595 | 5.45238e-10 * * *
(13,3) 20 20 0.00441 | 4.03880e-10 || 1.6945e-10 | 0.00194057 | 30800*
(8,4) 17 17 0.00374 | 3.43298e-10 || 3.3476e-10 | 0.00383372 | 18400*
(4,10) 13 3 0.00286 | 2.62522e-10 * * *
(14,4) 9 9 0.00198 | 1.81746e-10 * * *
(14,2) 7 7 0.00154 | 1.41358e-10 || 9.6280e-11 | 0.00110259 3200*
(15,3) 7 7 0.00154 | 1.41358e-10 || 1.1642e-12 | 1.333e-05 24600*
(16,4) 5 5 0.00110 | 1.00970e-10 * * *
(16,2) 3 3 0.00066 | 6.05820e-11 || 1.7349¢e-12 | 1.9868e-05 3300*
(12,0) 2 1 0.00044 | 4.03880e-11 || 1.0112e-10 | 0.00115802 1

*: the number of classes saved was limited by the allocated database size.
The reported number of classes is an estimate.

Table 1: Some simulated and predicted results for test graph at o = 0.48.
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Figure 6: Evaluation results for trapping sets (10,0), (10,2), and (10,4), (on the left) and
superimposed with (12,0), (12,2), and (12,4) (on the right).

Clearly, some simplified models are possible. The odd looking curves among the (10, 4)
sets are due to trapping sets that extend to a (11, 3) trapping set. Such sets fail on the
(11, 3) set more than on the (10,4) set.

References

[1]

[4]
[5]

S. Benedetto and G. Montorsi, “Unveiling turbo codes: some results on parallel
concatenated coding schemes,” IEEE Trans. Inform. Theory, vol. 42, pp. 409-428,
Mar. 1996.

D. MacKay and M. Postol, “Weaknesses of margulis and ramanujan-margulis low-
density parity-check codes,” FElectronic Notes in Theoretical Computer Science,
vol. 74, 2003.

C. Di, D. Proietti, E. Telatar, T. Richardson, and R. Urbanke, “Finite length analysis
of low-density parity-check codes,” IEEE Trans. on Information Theory, pp. 1570
1579, June 2002.

T. Richardson, “Matched liftings of 1dpc codes.” in preparation.

Y. Mao and A. H. Banihashemi, “A heuristic search for good low-density parity-
check codes at short block lengths,” in Proc. IEEE Int. Conf. Commun., (Helsinki,
Finland), June 2001.

T. Tian, C. Jones, J. Villasenor, and R. D. Wesel, “Construction of irregular ldpc
codes with low error floors,” in Proceedings IEEE International Conference on Com-
munications, 2003.

J. Thorpe, “Low-complexity approximations to belief propagation for Idpc codes,” in
Proceedings of IEEE ISIT, (Yokohama, Japan), July 2003. Extended version available
at http://www.ee.caltech.edu/~jeremy /research/papers/research.html.

1435



	-------------------
	Main Menu
	Foreword
	41 Years of Allerton
	Table of Contents
	List of Authors
	Search Help
	--------------------

